VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELAGAVI

Sri Adhichunchanagiri Shikshana Trust ® BGS INSTITUTE OF TECHNOLOGY

BG Nagara -571448, Mandya District

Department of Electronics and Communication Engineering

Question Bank of

Fiber Optics & Networks (15EC82)

(As per Visvesvaraya Technological University Syllabus)

Complied By:

Prof. Kavitha B C

Assistant Professor Dept. of ECE, BGSIT

Programme	Electronics and Communication Engineering	Degree	Bachelor of Engineering
Course	Fiber Optics & Networks	Semester	8
Course Code	15EC82	Course Type	Theory
Total Planned Hours	50	Credits	4
CIE	20 Marks	SIE Marks	80 Marks
Faculty Name	Mrs. Kavitha B C	Semester/Section	8 th 'A' & 'B' Sec

Cours	Course Outcomes						
C01	Explain the basic principle of optical fiber communication with different modes of						
	Light propagation, types of fibbers and optical material.						
CO2	Determine the characteristics, losses and modes of transmission in optical fiber.						
CO3	Develop the expression for external quantum of LED and LASER diode.						
CO4	Outline the working principles and applications of the optical component						
CO5	Explain the different types of optical networks, protocols MAN, LAN and access Networks WDM.						

Course S	Course Syllabus						
Module	Contents	No. of Hours					
1	Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planar guide, Phase and group velocity, Cylindrical fiber: Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effective refractive index. Fiber Materials, Photonic crystal fibers.	10					
2.	 Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. Optical Fiber Connectors: Fiber alignment and joint loss, Fiber Splices, Fiber connectors, Fiber couplers. 	10					
3	Optical sources: Energy Bands, Direct and Indirect Band gaps, Light Emitting diodes: LED Structures, Light Source Materials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External	10					

		1
	Quantum Efficiency, Resonant frequencies, Laser Diode structures	
	and Radiation Patterns: Single mode lasers.	
	Photo detectors: Physical principles of Photodiodes, Photo	
	detector noise, Detector response time.	
	Optical Receiver: Optical Receiver Operation: Error sources, Front	
	End Amplifiers, Receiver sensitivity, Quantum Limit.	
		10
	WDM Concepts and Components: Overview of WDM: Operational	
4	Principles of WDM, WDM standards, Mach-Zehnder Interferometer	
4	Multiplexers, Isolators and Circulators, Fiber grating filters,	
	Dielectric Thin-Film Filters, Diffraction Gratings, Active Optical	
	Components, Tunable light sources,	
	Optical amplifiers: Basic application and Types, Semiconductor	
	Optical amplifiers, Erbium Doped Fiber Amplifiers, Raman	
	Amplifiers, Wideband Optical Amplifiers.	
	Optical Networks: Optical network evolution and concepts:	10
		10
	Optical networking terminology, Optical network node and	
	switching elements, Wavelength division multiplexed networks,	
	Public telecommunication network overview. Optical network	
	transmission modes, layers and protocols: Synchronous	
_	networks, Asynchronous transfer mode, OSI reference model,	
5	Optical transport network, Internet protocol, Wavelength routing	
	networks: Routing and wavelength assignment, Optical switching	
	networks: Optical circuit switched networks, packet switched	
	networks, Multiprotocol Label Switching, Optical burst switching	
	networks, Optical network deployment: Long- haul networks,	
	Metropoliton area networks, Access networks,	
	Local area networks.	

SI. No.	Questions	Marks	Cour se Outco me	Bloo ms Taxo nom y Level	Appeared in VTU papers		
	MODULE 1						
1	Describe block diagram of an optical fiber transmission link and Explain the function of each element in link	08 M	C01	BT2	Jan 2014		
2	Explain what is meant by graded index optical fiber using simple ray theory concept indicate the major advantages of this type of fiber with regarding to multimode propagation.	06 M	CO1	BT2	Jan 2014		
	A graded Index fiber with a parabolic refractive index profile core has a refractive index at the core axis of 1.5 and a relative index difference of 1%. Estimate the maximum possible core diameter which allows single mode operation at a wavelength of 1.3 µm.	06 M	C01	BT3	Jan 2014		
4	Define the terms i) Acceptance angle ii) Numerical aperture. Derive expressions for numerical aperture.	08 M	C01	BT2	Jan 2015		

Dept. of Electronics and Communication Engineering

5	What are the advantages and disadvantage of optical fiber communication?	07 M	C01	BT2	Jan 2017
6	Derive the expression for Numerical aperture using ray theory.	07 M	C01	BT2	Jan 2018
7	A graded index fiber has a core with a parabolic refractive index profile which has a diameter of 50 μ m. The fiber has a numerical aperture of 0.2. Estimate the total number of guided modes propagating in the fiber when it is operating in the wavelength of 1 μ m.	06M	C01	BT2	Jan 2018
8	Define acceptance angle and critical angle.	05 M	C01	BT2	Jul 2014
9	With the help of neat diagrams discuss the structure of single mode and multimode step index fibers.	06 M	C01	BT2	Jul 2016
10	Summarize the inherent advantages of optical fiber over conventional copper cables.	06 M	C01	BT2	Jul 2017
11	Describe with neat diagram different types of optical fiber waveguides. Using ray theory, explain the propagation of light inside the fiber.	08 M	C01	BT2	Jul 2017
12	Using Snell's law, derive an expression for Numerical Aperture of a fiber optic cable.	08 M	C01	BT3	Jul 2018
13	Explain total internal reflection and photonic crystal fiber.	06 M	C01	BT2	Jul 2018
14	With the neat diagram, discuss the structure of a single mode and multimode step index fiber with advantages for each type.	08 M	C01	BT2	Jul 2019
15	A silica glass optical fiber has a core refractive index of 1.480 and the cladding refractive index of 1.460. Calculate the critical angle, acceptance angle and Numerical Aperture and the number of guided modes at 1300 mm if core radius is 20 µm.	08 M	C01	BT3	Jul 2019

	MODULE 2					
1	Describe Rayleigh scattering in optical fiber.	06 M	CO2	BT2	Jan 2014	
2	Briefly explain intra modal and inter modal dispersion.	06 M	CO2	BT2	Jan 2014	
3	Discuss briefly various attenuation mechanism in an optical fiber.	09 M	CO2	BT2	Jan 2015	
4	Explain the different types of absorption losses in optical fiber.	06 M	CO2	BT2	Jan 2015	
5	Derive an expression for pulse spreading due to material dispersion which is a function of wavelength and time delay.	08 M	CO2	BT2	Jan 2017	
6	Explain the different types of bending losses in optical fiber.	06 M	CO2	BT2	Jan 2017	

7	In brief explain linear scattering losses.	07 M	C02	BT2	Jan 2018
8	Discuss different types of non-linear scattering losses.	06 M	CO2	BT2	Jul 2016
9	A step index multimode fiber with a core refractive index of 1500, a relative refractive index difference of 3% and an operating wavelength of 0.82 μ m. Estimate the critical radius of curvature at which large bending losses occurs.	05 M	CO2	BT2	Jul 2016
10	Silica has an estimated fictive temperature of 1400 k with an isothermal compressibility of $7x10\ 11\ m2N-1$. The refractive index and photo elastic co-efficient for silica are 1.46 and 0.286 respectively. Determine the theorical attenuation in decibels per kilometer due to fundamental Rayleigh scattering in silica at optical wavelength of 0.63 μ m. Boltzmann's constant is 1.381x10 -23 JK-1	08 M	CO2	BT3	Jul 2016
11	A 6 km optical link consists of multi mode step index fiber with a core refractive index of 1.5 and a relative refractive index difference of 1%. Estimate the delay between the slowest and fastest mode at the fiber output and also find the rms pulse broadening due to intermodal dispersion on the link.	05 M	CO2	BT3	Jul 2018
12	Explain briefly about chromatic dispersion within an optical fiber.	06 M	CO2	BT2	Jul 2019
13	Describe with aid of suitable diagram, three common techniques used for mechanical splicing of optical fiber.	06 M	CO2	BT2	Jan 2014
14	With aid of simple sketch, outline major categories of fiber couplers.	06 M	C02	BT2	Jan 2014
15	What are different types of mechanical misalignment?	05 M	CO2	BT2	Jan 2017
16	List out the requirements that a good connector design has to meet.	05 M	CO2	BT2	Jan 2018
17	What is splicing? Explain the fusion splicing with a neat diagram.	08 M	CO2	BT2	Jul 2014

	MODULE 3						
				500			
1	Sketch and explain Fabry Perot resonator cavity of laser.	07 M	CO3	BT2	Jan 2014		
2	With the help of a schematic diagram, explain the design features of an edge emitting LED.	06 M	CO3	BT2	Jan 2015		
3	Define the terms i) Spontaneous emission. ii) Stimulated emission. iii) Quantum efficiency.	08 M	CO3	BT2	Jan 2015		
4	With the help of schematic diagram, explain briefly construction and operation of APD.	06 M	CO3	BT2	Jan 2015		
5	An InGaAs PIN diode operating at a wavelength of 1300 µm has the following specification. i) Quantum efficiency=90%	05 M	CO3	BT2	Jan 2015		

Dept. of Electronics and Communication Engineering

	 ii) Dark current ID=4 Na iii) Load resistor RL=1k Ω iv) Incident optical power=300 nW v) Receiver Bandwidth=200 MHz Assuming negligible surface leakage current, calculate the mean square value of shot noise, dark current noise and thermal noise currents. 				
6	Explain the GaAIAs double hetero junction LED structure.	07 M	CO3	BT2	Jan 2018
7	List the desirable characteristics of the LED and LASER diode as optical sources.	08 M	CO3	BT2	Jul 2014
8	Explain p-i-n photo diode with a neat diagram.	08 M	C03	BT2	Jul 2014
	A double hetero junction InGaAsP LED emitting at a peak wavelength of 1310 nm has radioactive and non-radioactive recombination times of 30 and 100 ns, the derive current is 40mA. Find the recombination life time and internal power generated.	06 M	CO3	BT2	Jul 2018
10	Briefly discuss the possible sources of noise in optical fiber receiver.	06 M	CO3	BT1	Jul 2019
11	Briefly explain the operation of double heterostructure Photo diodes.	05 M	CO3	BT1	Jan 2017
12	Explain the operation of front end amplifier.	05 M	CO3	BT1	Jan 2017
	Draw the cross-section of GaALAs double hetero structure LED energy band diagram and refractive index variation. Explain their importance.	07 M	CO3	BT2	Jan 2017
14	With a schematic diagram, explain the working of an optical receiver.	06 M	CO3	BT2	Jul 2016
15	Explain the term receiver sensitivity. Derive an equation for receiver sensitivity in terms of photo detector noise.	08 M	CO3	BT3	Jan 2016

MODULE 4

1	Explain the operational principle and implementation of WDM with diagrams.	08 M	CO4	BT2	Jan 2014
2	Write a note on MEMS technology.	06 M	CO4	BT2	Jan 2014
3	Explain the operation of isolator	06 M	CO4	BT2	Jan 2014
4	Write basic applications and types of optical amplifiers.	08 M	CO4	BT2	Jan 2014
5	Explain with aid of neat diagram EDFA.	06 M	CO4	BT2	Jan 2014
6	Write a short notes on any two of the following i) Optical isolator	10 M	CO4	BT2	Jan 2015

Dept. of Electronics and Communication Engineering

		r	r	1	
	ii) Optical circulator				
	iii) Optical add/drop multiplexers.				
7	List out the basic applications of optical amplifiers and	08 M	CO4	BT2	Jan 2015
	describe briefly with the different configurations.				
8	Write short notes on semiconductor optical amplifiers	06 M	C04	BT2	Jan 2015
9	Derive an expression for difference in length in MZI	09 M	C04	BT2	Jan 2017
	multiplexer.				
10	Explain in detail the amplification mechanism with energy	10 M	CO4	BT2	Jul 2014
	level diagram in an EDFA.				
11	What is WDM? Explain the advantages of WDM.	04 M	C04	BT2	Jul 2014
1.0					-
12	With a neat diagram, Explain the working principle of Mach-	08 M	C04	BT2	Jul 2017
	Zehnder Inter-ferometer multiplexer.				
13	Discuss about chromatic dispersion compensator	08 M	C04	BT2	Jul 2018
14	Derive an equation for path difference in a 2x2 Mach-20	08 M	CO4	BT2	Jul 2018
	finder interferometer.				
15	Derive an equation for amplifier gain in semiconductor	08 M	C04	BT3	Jul 2018
	optical amplifiers.				
	optical amplificio.				
16	Explain polarization independent isolator with a neat	08 M	C04	BT1	Jul 2019
10		00 14	604	DII	Jui 2017
17	diagram.	06 M	CO4	DTT1	Jul 2010
17	Explain optical circulators and optical add/drop multiplexers	06 M	C04	BT1	Jul 2019
	in detail.				

MODULE 5							
1	Explain about synchronous networks with STS frame Structure.	08 M	C05	BT2	Jul 2019		
2	Describe about internal protocol and in evolution over physical layer evolution and traffic flow pattern with relevant diagram.	08 M	CO5	BT2	Jul 2019		
3	Explain with neat diagrams, Wavelength convertible routing network architecture.	08 M	CO5	BT2	Jul 2019		
4	Write short notes on optical fiber access networks and local area networks.	08 M	C05	BT2	Jul 2019		
5	Explain the following topologies in optical networks.i)Busii)Ringiii)Stariv)Mesh topology	04 M	CO5	BT2			
6	Describe the concept of an OXC and a ROADM. Outline how they are utilized in the development of large-scale wavelength division multiplexed networks.	10 M	CO5	BT2			

7	Explain the distinguishing features of optical switching and optical wavelength routing. With the aid of block diagrams outline the optical network hierarchy for the public telecommunications network.	08 M	CO5	BT2	
8	Explain the modularity and scalability features of an optical network. Outline their roles in the development of flexible and physically expanding optical networks.	06 M	CO5	BT2	
9	Define what is ATM and its application in optical networks. Compare the format of an ATM cell with a SONET frame.	09 M	C05	BT2	
10	Explain the terms protocol and Internet Protocol (IP) and using the OSI reference model discuss the implementation aspects of the IP over: (a) ATM (b) SONET(c) DWDM.	10 M	C05	BT2	
11	A metropolitan area network (MAN) provides the link between long-haul and access networks. Discuss the basic requirements and functionality of an optical MAN.	04 M	CO5	BT2	
12	Differentiate between static and dynamic routing and wavelength assignments explaining their implementations using a ring topology.	08 M	CO5	BT2	
13	Describe the main features and drawbacks of optical circuit- switched networks.	08 M	C05	BT2	
14	Discuss the operation of optical packet-switched networks thereby explaining the frame format and also differentiating between the functions of edge and core routers in these networks.	08 M	C05	BT2	
15.	With neat diagram explain Network Nodes and Switching elements.	07M	CO5	BT2	